p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes.

نویسندگان

  • Abdul M Mondal
  • Izumi Horikawa
  • Sharon R Pine
  • Kaori Fujita
  • Katherine M Morgan
  • Elsa Vera
  • Sharlyn J Mazur
  • Ettore Appella
  • Borivoj Vojtesek
  • Maria A Blasco
  • David P Lane
  • Curtis C Harris
چکیده

Cellular senescence contributes to aging and decline in tissue function. p53 isoform switching regulates replicative senescence in cultured fibroblasts and is associated with tumor progression. Here, we found that the endogenous p53 isoforms Δ133p53 and p53β are physiological regulators of proliferation and senescence in human T lymphocytes in vivo. Peripheral blood CD8+ T lymphocytes collected from healthy donors displayed an age-dependent accumulation of senescent cells (CD28-CD57+) with decreased Δ133p53 and increased p53β expression. Human lung tumor-associated CD8+ T lymphocytes also harbored senescent cells. Cultured CD8+ blood T lymphocytes underwent replicative senescence that was associated with loss of CD28 and Δ133p53 protein. In poorly proliferative, Δ133p53-low CD8+CD28- cells, reconstituted expression of either Δ133p53 or CD28 upregulated endogenous expression of each other, which restored cell proliferation, extended replicative lifespan and rescued senescence phenotypes. Conversely, Δ133p53 knockdown or p53β overexpression in CD8+CD28+ cells inhibited cell proliferation and induced senescence. This study establishes a role for Δ133p53 and p53β in regulation of cellular proliferation and senescence in vivo. Furthermore, Δ133p53-induced restoration of cellular replicative potential may lead to a new therapeutic paradigm for treating immunosenescence disorders, including those associated with aging, cancer, autoimmune diseases, and HIV infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflammation, senescence and cancer: interweaving microRNA, inflammatory cytokines and p53 networks

The p53 pathway is an intrinsic monitor and response pathway of telomeric attrition involved in cellular aging and senescence. Cellular senescence is tumor suppressive that can be activated by p53 in cancer cells. We are studying the molecular mechanisms of cellular senescence in normal and malignant human cells and the role of the telometric multiprotein complex, shelterin, that includes TRF2 ...

متن کامل

Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence.

A variety of tumor-suppressor mechanisms exist to promote genome integrity and organismal survival. One such mechanism is cellular senescence. In response to replicative aging, DNA damage, and oncogenic stimuli, the p53 and Rb pathways are activated to prevent the proliferation of damaged cells by inducing senescence or apoptosis. We have performed a loss-of-function genetic screen in primary h...

متن کامل

Dual regulation of TERT activity through transcription and splicing by ΔNP63α

P53 homolog p63 was shown to play a role in premature ageing phenotype found in mouse models through regulation of the replicative senescence. We previously showed that the forced DeltaNp63alpha expression decreased the SIRT1 protein levels, and induced the replicative senescence of human keratinocytes, while the ectopic SIRT1 expression decreased the senescence. Using the DeltaNp63alpha overex...

متن کامل

Regulation of p53 during senescence in normal human keratinocytes

p53, the guardian of the genome, is a tumor suppressor protein and critical for the genomic integrity of the cells. Many studies have shown that intracellular level of p53 is enhanced during replicative senescence in normal fibroblasts, and the enhanced level of p53 is viewed as the cause of senescence. Here, we report that, unlike in normal fibroblasts, the level of intracellular p53 reduces d...

متن کامل

ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation.

ING2 is a candidate tumor suppressor gene that can activate p53 by enhancing its acetylation. Here, we demonstrate that ING2 is also involved in p53-mediated replicative senescence. ING2 protein expression increased in late-passage human primary cells, and it colocalizes with serine 15-phosphorylated p53. ING2 and p53 also complexed with the histone acetyltransferase p300. ING2 enhanced the int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 123 12  شماره 

صفحات  -

تاریخ انتشار 2013